Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(4): 1312-1326, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38513073

RESUMO

New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.


Assuntos
Acetaldeído/análogos & derivados , Bactérias , Escherichia coli , Transferases , Antibacterianos/química , Piruvatos/metabolismo
2.
Commun Biol ; 6(1): 1276, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110506

RESUMO

Iron-sulfur clusters are essential for life and defects in their biosynthesis lead to human diseases. The mechanism of cluster assembly and delivery to cytosolic and nuclear client proteins via the cytosolic iron-sulfur cluster assembly (CIA) pathway is not well understood. Here we report cryo-EM structures of the HEAT-repeat protein Met18 from Saccharomyces cerevisiae, a key component of the CIA targeting complex (CTC) that identifies cytosolic and nuclear client proteins and delivers a mature iron-sulfur cluster. We find that in the absence of other CTC proteins, Met18 adopts tetrameric and hexameric states. Using mass photometry and negative stain EM, we show that upon the addition of Cia2, these higher order oligomeric states of Met18 disassemble. We also use pulldown assays to identify residues of critical importance for Cia2 binding and recognition of the Leu1 client, many of which are buried when Met18 oligomerizes. Our structures show conformations of Met18 that have not been previously observed in any Met18 homolog, lending support to the idea that a highly flexible Met18 may be key to how the CTC is able to deliver iron-sulfur clusters to client proteins of various sizes and shapes, i.e. Met18 conforms to the dimensions needed.


Assuntos
Temperatura Alta , Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/química , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Ferro/metabolismo , Enxofre/metabolismo
4.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577561

RESUMO

Nitriles are uncommon in nature and are typically constructed from oximes via the oxidative decarboxylation of amino acid substrates or from the derivatization of carboxylic acids. Here we report a third strategy of nitrile biosynthesis featuring the cyanobacterial nitrile synthase AetD. During the biosynthesis of the 'eagle-killing' neurotoxin, aetokthonotoxin, AetD converts the alanyl side chain of 5,7-dibromo-L-tryptophan to a nitrile. Employing a combination of structural, biochemical, and biophysical techniques, we characterized AetD as a non-heme diiron enzyme that belongs to the emerging Heme Oxygenase-like Diiron Oxidase and Oxygenase (HDO) superfamily. High-resolution crystal structures of AetD together with the identification of catalytically relevant products provide mechanistic insights into how AetD affords this unique transformation that we propose proceeds via an aziridine intermediate. Our work presents a new paradigm for nitrile biogenesis and portrays a substrate binding and metallocofactor assembly mechanism that may be shared among other HDO enzymes.

5.
J Biol Chem ; 299(9): 105109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517695

RESUMO

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Assuntos
Cobamidas , Metilmalonil-CoA Mutase , Modelos Moleculares , Chaperonas Moleculares , Cobamidas/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Isomerases/química , Isomerases/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Cupriavidus/química , Cupriavidus/enzimologia , Estrutura Quaternária de Proteína , Domínio Catalítico , Coenzimas/metabolismo
6.
iScience ; 26(6): 106902, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37283811

RESUMO

Anaerobic microbial degradation of hydrocarbons is often initiated through addition of the hydrocarbon to fumarate by enzymes known as X-succinate synthases (XSSs). XSSs use a glycyl radical cofactor, which is installed by an activating enzyme (XSS-AE), to catalyze this carbon-carbon coupling reaction. The activation step, although crucial for catalysis, has not previously been possible in vitro because of insolubility of XSS-AEs. Here, we take a genome mining approach to find an XSS-AE, a 4-isopropylbenzylsuccinate synthase (IBSS)-AE (IbsAE) that can be solubly expressed in Escherichia coli. This soluble XSS-AE can activate both IBSS and the well-studied benzylsuccinate synthase (BSS) in vitro, allowing us to explore XSSs biochemically. To start, we examine the role of BSS subunits and find that the beta subunit accelerates the rate of hydrocarbon addition. Looking forward, the methodology and insight gathered here can be used more broadly to understand and engineer XSSs as synthetically useful biocatalysts.

7.
Proc Natl Acad Sci U S A ; 120(8): e2214085120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787360

RESUMO

G-protein metallochaperone MeaB in bacteria [methylmalonic aciduria type A (MMAA) in humans] is responsible for facilitating the delivery of adenosylcobalamin (AdoCbl) to methylmalonyl-CoA mutase (MCM), the only AdoCbl-dependent enzyme in humans. Genetic defects in the switch III region of MMAA lead to the genetic disorder methylmalonic aciduria in which the body is unable to process certain lipids. Here, we present a crystal structure of Methylobacterium extorquens MeaB bound to a nonhydrolyzable guanosine triphosphate (GTP) analog guanosine-5'-[(ß,γ)-methyleno]triphosphate (GMPPCP) with the Cbl-binding domain of its target mutase enzyme (MeMCMcbl). This structure provides an explanation for the stimulation of the GTP hydrolyase activity of MeaB afforded by target protein binding. We find that upon MCMcbl association, one protomer of the MeaB dimer rotates ~180°, such that the inactive state of MeaB is converted to an active state in which the nucleotide substrate is now surrounded by catalytic residues. Importantly, it is the switch III region that undergoes the largest change, rearranging to make direct contacts with the terminal phosphate of GMPPCP. These structural data additionally provide insights into the molecular basis by which this metallochaperone contributes to AdoCbl delivery without directly binding the cofactor. Our data suggest a model in which GTP-bound MeaB stabilizes a conformation of MCM that is open for AdoCbl insertion, and GTP hydrolysis, as signaled by switch III residues, allows MCM to close and trap its cofactor. Substitutions of switch III residues destabilize the active state of MeaB through loss of protein:nucleotide and protein:protein interactions at the dimer interface, thus uncoupling GTP hydrolysis from AdoCbl delivery.


Assuntos
Metalochaperonas , Chaperonas Moleculares , Humanos , Chaperonas Moleculares/metabolismo , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Nucleotídeos , Guanosina Trifosfato/metabolismo
8.
J Am Chem Soc ; 145(9): 5145-5154, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812162

RESUMO

Ribonucleotide reductases (RNRs) play an essential role in the conversion of nucleotides to deoxynucleotides in all organisms. The Escherichia coli class Ia RNR requires two homodimeric subunits, α and ß. The active form is an asymmetric αα'ßß' complex. The α subunit houses the site for nucleotide reduction initiated by a thiyl radical (C439•), and the ß subunit houses the diferric-tyrosyl radical (Y122•) that is essential for C439• formation. The reactions require a highly regulated and reversible long-range proton-coupled electron transfer pathway involving Y122•[ß] ↔ W48?[ß] ↔ Y356[ß] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]. In a recent cryo-EM structure, Y356[ß] was revealed for the first time and it, along with Y731[α], spans the asymmetric α/ß interface. An E52[ß] residue, which is essential for Y356 oxidation, allows access to the interface and resides at the head of a polar region comprising R331[α], E326[α], and E326[α'] residues. Mutagenesis studies with canonical and unnatural amino acid substitutions now suggest that these ionizable residues are important in enzyme activity. To gain further insights into the roles of these residues, Y356• was photochemically generated using a photosensitizer covalently attached adjacent to Y356[ß]. Mutagenesis studies, transient absorption spectroscopy, and photochemical assays monitoring deoxynucleotide formation collectively indicate that the E52[ß], R331[α], E326[α], and E326[α'] network plays the essential role of shuttling protons associated with Y356 oxidation from the interface to bulk solvent.


Assuntos
Prótons , Ribonucleotídeo Redutases , Transporte de Elétrons , Ribonucleotídeo Redutases/química , Modelos Moleculares , Oxirredução , Escherichia coli/metabolismo
9.
Curr Opin Struct Biol ; 77: 102489, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272229

RESUMO

Ribonucleotide reductases (RNRs) use radical-based chemistry to convert ribonucleotides into deoxyribonucleotides, an essential step in DNA biosynthesis and repair. There are multiple RNR classes, the best studied of which is the class Ia RNR that is found in Escherichia coli, eukaryotes including humans, and many pathogenic and nonpathogenic prokaryotes. This review covers recent advances in our understanding of class Ia RNRs, including a recent reporting of a structure of the active state of the E. coli enzyme and the impacts that the structure has had on spurring research into the mechanism of long-range radical transfer. Additionally, the review considers other recent structural and biochemical research on class Ia RNRs and the potential of that work for the development of anticancer and antibiotic therapeutics.


Assuntos
Ribonucleotídeo Redutases , Humanos , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Escherichia coli/genética
10.
Biochemistry ; 61(24): 2797-2805, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36137563

RESUMO

Ni-Fe-S-dependent carbon monoxide dehydrogenases (CODHs) are enzymes that interconvert CO and CO2 by using their catalytic Ni-Fe-S C-cluster and their Fe-S B- and D-clusters for electron transfer. CODHs are important in the microbiota of animals such as humans, ruminants, and termites because they can facilitate the use of CO and CO2 as carbon sources and serve to maintain redox homeostasis. The bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is responsible for acetate production via the Wood-Ljungdahl pathway, where acetyl-CoA is assembled from two CO2-derived one-carbon units. A Ni-Fe-S A-cluster is key to this chemistry. Whereas acetogens use the A- and C-clusters of CODH/ACS to produce acetate from CO2, methanogens use A- and C-clusters of an acetyl-CoA decarbonylase/synthase complex (ACDS) to break down acetate en route to CO2 and methane production. Here we review some of the recent advances in understanding the structure and mechanism of CODHs, CODH/ACSs, and ACDSs, their unusual metallocofactors, and their unique metabolic roles in the human gut and elsewhere.


Assuntos
Aldeído Oxirredutases , Dióxido de Carbono , Monóxido de Carbono , Coenzima A Ligases , Acetatos , Acetilcoenzima A , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo , Níquel , Ferro , Enxofre , Metaloproteínas
11.
Nat Microbiol ; 7(9): 1453-1465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953657

RESUMO

Symbiotic partnerships with rhizobial bacteria enable legumes to grow without nitrogen fertilizer because rhizobia convert atmospheric nitrogen gas into ammonia via nitrogenase. After Sinorhizobium meliloti penetrate the root nodules that they have elicited in Medicago truncatula, the plant produces a family of about 700 nodule cysteine-rich (NCR) peptides that guide the differentiation of endocytosed bacteria into nitrogen-fixing bacteroids. The sequences of the NCR peptides are related to the defensin class of antimicrobial peptides, but have been adapted to play symbiotic roles. Using a variety of spectroscopic, biophysical and biochemical techniques, we show here that the most extensively characterized NCR peptide, 24 amino acid NCR247, binds haem with nanomolar affinity. Bound haem molecules and their iron are initially made biologically inaccessible through the formation of hexamers (6 haem/6 NCR247) and then higher-order complexes. We present evidence that NCR247 is crucial for effective nitrogen-fixing symbiosis. We propose that by sequestering haem and its bound iron, NCR247 creates a physiological state of haem deprivation. This in turn induces an iron-starvation response in rhizobia that results in iron import, which itself is required for nitrogenase activity. Using the same methods as for L-NCR247, we show that the D-enantiomer of NCR247 can bind and sequester haem in an equivalent manner. The special abilities of NCR247 and its D-enantiomer to sequester haem suggest a broad range of potential applications related to human health.


Assuntos
Rhizobium , Simbiose , Bactérias , Cisteína , Heme , Humanos , Ferro , Nitrogênio , Nitrogenase , Peptídeos
12.
Front Mol Biosci ; 9: 903148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813832

RESUMO

The specimen preparation process is a key determinant in the success of any cryo electron microscopy (cryoEM) structural study and until recently had remained largely unchanged from the initial designs of Jacques Dubochet and others in the 1980s. The process has transformed structural biology, but it is largely manual and can require extensive optimisation for each protein sample. The chameleon instrument with its self-wicking grids and fast-plunge freezing represents a shift towards a robust, automated, and highly controllable future for specimen preparation. However, these new technologies require new workflows and an understanding of their limitations and strengths. As early adopters of the chameleon technology, we report on our experiences and lessons learned through case studies. We use these to make recommendations for the benefit of future users of the chameleon system and the field of cryoEM specimen preparation generally.

13.
PLoS One ; 17(6): e0269572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35675376

RESUMO

Ribonucleotide reductases (RNRs) use radical-based chemistry to catalyze the conversion of all four ribonucleotides to deoxyribonucleotides. The ubiquitous nature of RNRs necessitates multiple RNR classes that differ from each other in terms of the phosphorylation state of the ribonucleotide substrates, oxygen tolerance, and the nature of both the metallocofactor employed and the reducing systems. Although these differences allow RNRs to produce deoxyribonucleotides needed for DNA biosynthesis under a wide range of environmental conditions, they also present a challenge for establishment of a universal activity assay. Additionally, many current RNR assays are limited in that they only follow the conversion of one ribonucleotide substrate at a time, but in the cell, all four ribonucleotides are actively being converted into deoxyribonucleotide products as dictated by the cellular concentrations of allosteric specificity effectors. Here, we present a liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based assay that can determine the activity of both aerobic and anaerobic RNRs on any combination of substrates using any combination of allosteric effectors. We demonstrate that this assay generates activity data similar to past published results with the canonical Escherichia coli aerobic class Ia RNR. We also show that this assay can be used for an anaerobic class III RNR that employs formate as the reductant, i.e. Streptococcus thermophilus RNR. We further show that this class III RNR is allosterically regulated by dATP and ATP. Lastly, we present activity data for the simultaneous reduction of all four ribonucleotide substrates by the E. coli class Ia RNR under various combinations of allosteric specificity effectors. This validated LC-MS/MS assay is higher throughput and more versatile than the historically established radioactive activity and coupled RNR activity assays as well as a number of the published HPLC-based assays. The presented assay will allow for the study of a wide range of RNR enzymes under a wide range of conditions, facilitating the study of previously uncharacterized RNRs.


Assuntos
Escherichia coli , Ribonucleotídeo Redutases , Anaerobiose , Cromatografia Líquida , Escherichia coli/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeos , Espectrometria de Massas em Tandem
14.
ACS Bio Med Chem Au ; 2(3): 173-186, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726326

RESUMO

The members of the radical S-adenosylmethionine (SAM) enzyme superfamily are responsible for catalyzing a diverse set of reactions in a multitude of biosynthetic pathways. Many members of this superfamily accomplish their transformations using the catalytic power of a 5'-deoxyadenosyl radical (5'-dAdo•), but there are also enzymes within this superfamily that bind auxiliary cofactors and extend the catalytic repertoire of SAM. In particular, the cobalamin (Cbl)-dependent class synergistically uses Cbl to facilitate challenging methylation and radical rearrangement reactions. Despite identification of this class by Sofia et al. 20 years ago, the low sequence identity between members has led to difficulty in predicting function of uncharacterized members, pinpointing catalytic residues, and elucidating reaction mechanisms. Here, we capitalize on the three recent structures of Cbl-dependent radical SAM enzymes that use common cofactors to facilitate ring contraction as well as radical-based and non-radical-based methylation reactions. With these three structures as a framework, we describe how the Cbl-dependent radical SAM enzymes repurpose the traditional SAM- and Cbl-binding motifs to form an active site where both Cbl and SAM can participate in catalysis. In addition, we describe how, in some cases, the classic SAM- and Cbl-binding motifs support the diverse functionality of this enzyme class, and finally, we define new motifs that are characteristic of Cbl-dependent radical SAM enzymes.

15.
Metallomics ; 14(6)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35485745

RESUMO

Metalloenzymes catalyze a diverse set of challenging chemical reactions that are essential for life. These metalloenzymes rely on a wide range of metallocofactors, from single metal ions to complicated metallic clusters. Incorporation of metal ions and metallocofactors into apo-proteins often requires the assistance of proteins known as metallochaperones. Nucleoside triphosphate hydrolases (NTPases) are one important class of metallochaperones and are found widely distributed throughout the domains of life. These proteins use the binding and hydrolysis of nucleoside triphosphates, either adenosine triphosphate or guanosine triphosphate, to carry out highly specific and regulated roles in the process of metalloenzyme maturation. Here, we review recent literature on NTPase metallochaperones and describe the current mechanistic proposals and available structural data. By using representative examples from each type of NTPase, we also illustrate the challenges in studying these complicated systems. We highlight open questions in the field and suggest future directions. This minireview is part of a special collection of articles in memory of Professor Deborah Zamble, a leader in the field of nickel biochemistry.


Assuntos
Metalochaperonas , Metaloproteínas , Trifosfato de Adenosina/metabolismo , Hidrolases , Metalochaperonas/metabolismo , Metais/metabolismo , N-Glicosil Hidrolases , Nucleosídeo-Trifosfatase , Nucleosídeos , Polifosfatos
16.
J Am Chem Soc ; 144(13): 5673-5684, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344653

RESUMO

Cobalamin (Cbl)-dependent S-adenosyl-l-methionine (AdoMet) radical methylases are known for their use of a dual cofactor system to perform challenging radical methylation reactions at unactivated carbon and phosphorus centers. These enzymes are part of a larger subgroup of Cbl-dependent AdoMet radical enzymes that also perform difficult ring contractions and radical rearrangements. This subgroup is a largely untapped reservoir of diverse chemistry that requires steady efforts in biochemical and structural characterization to reveal its complexity. In this Perspective, we highlight the significant efforts over many years to elucidate the function, mechanism, and structure of TsrM, an unexpected nonradical methylase in this subgroup. We also discuss recent achievements in characterizing radical methylase subgroup members that exemplify how key tools in mechanistic enzymology are valuable time and again. Finally, we identify recent enzyme activity studies that have made use of bioinformatic analyses to expand our definition of the subgroup. Additional breakthroughs in radical (and nonradical) enzymatic chemistry and challenging transformations from the unexplored space of this subgroup are undoubtedly on the horizon.


Assuntos
S-Adenosilmetionina , Vitamina B 12 , Metionina , Metilação , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Vitamina B 12/química
17.
J Inorg Biochem ; 230: 111774, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278753

RESUMO

Carbon monoxide dehydrogenase (CODH) plays an important role in the processing of the one­carbon gases carbon monoxide and carbon dioxide. In CODH enzymes, these gases are channeled to and from the Ni-Fe-S active sites using hydrophobic cavities. In this work, we investigate these gas channels in a monofunctional CODH from Desulfovibrio vulgaris, which is unusual among CODHs for its oxygen-tolerance. By pressurizing D. vulgaris CODH protein crystals with xenon and solving the structure to 2.10 Å resolution, we identify 12 xenon sites per CODH monomer, thereby elucidating hydrophobic gas channels. We find that D. vulgaris CODH has one gas channel that has not been experimentally validated previously in a CODH, and a second channel that is shared with Moorella thermoacetica carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS). This experimental visualization of D. vulgaris CODH gas channels lays groundwork for further exploration of factors contributing to oxygen-tolerance in this CODH, as well as study of channels in other CODHs. We dedicate this publication to the memory of Dick Holm, whose early studies of the Ni-Fe-S clusters of CODH inspired us all.


Assuntos
Aldeído Oxirredutases , Monóxido de Carbono , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Monóxido de Carbono/química , Complexos Multienzimáticos , Oxigênio , Xenônio
18.
Elife ; 112022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35137690

RESUMO

Antibiotic-resistant Neisseria gonorrhoeae (Ng) are an emerging public health threat due to increasing numbers of multidrug resistant (MDR) organisms. We identified two novel orally active inhibitors, PTC-847 and PTC-672, that exhibit a narrow spectrum of activity against Ng including MDR isolates. By selecting organisms resistant to the novel inhibitors and sequencing their genomes, we identified a new therapeutic target, the class Ia ribonucleotide reductase (RNR). Resistance mutations in Ng map to the N-terminal cone domain of the α subunit, which we show here is involved in forming an inhibited α4ß4 state in the presence of the ß subunit and allosteric effector dATP. Enzyme assays confirm that PTC-847 and PTC-672 inhibit Ng RNR and reveal that allosteric effector dATP potentiates the inhibitory effect. Oral administration of PTC-672 reduces Ng infection in a mouse model and may have therapeutic potential for treatment of Ng that is resistant to current drugs.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Piridinas/farmacologia , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Animais , Nucleotídeos de Desoxiadenina/metabolismo , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Feminino , Gonorreia/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Neisseria gonorrhoeae/efeitos dos fármacos
19.
J Inorg Biochem ; 230: 111768, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202981

RESUMO

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Assuntos
Lasers , Metano , Cristalografia por Raios X , Metano/química , Oxirredução , Oxirredutases , Temperatura
20.
J Struct Biol ; 214(1): 107825, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906669

RESUMO

Ribonucleotide reductase (RNR) is an essential enzyme that converts ribonucleotides to deoxyribonucleotides and is a promising antibiotic target, but few RNRs have been structurally characterized. We present the use of the chameleon, a commercially-available piezoelectric cryogenic electron microscopy plunger, to address complex denaturation in the Neisseria gonorrhoeae class Ia RNR. Here, we characterize the extent of denaturation of the ring-shaped complex following grid preparation using a traditional plunger and using a chameleon with varying dispense-to-plunge times. We also characterize how dispense-to-plunge time influences the amount of protein sample required for grid preparation and preferred orientation of the sample. We demonstrate that the fastest dispense-to-plunge time of 54 ms is sufficient for generation of a data set that produces a high quality structure, and that a traditional plunging technique or slow chameleon dispense-to-plunge times generate data sets limited in resolution by complex denaturation. The 4.3 Å resolution structure of Neisseria gonorrhoeae class Ia RNR in the inactive α4ß4 oligomeric state solved using the chameleon with a fast dispense-to-plunge time yields molecular information regarding similarities and differences to the well studied Escherichia coli class Ia RNR α4ß4 ring.


Assuntos
Neisseria gonorrhoeae , Ribonucleotídeo Redutases , Escherichia coli/metabolismo , Neisseria gonorrhoeae/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...